Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach

نویسندگان

  • Mohamadmahdi Samandari
  • Karen Abrinia
  • Amir Sanati-Nezhad
چکیده

Manipulation of micro and nano particles in microfluidic devices with high resolution is a challenge especially in bioengineering applications where bio-particles (BPs) are separated or patterned. While acoustic forces have been used to control the position of BPs, its theoretical aspects need further investigation particularly for high-resolution manipulation where the wavelength and particle size are comparable. In this study, we used a finite element method (FEM) to amend analytical calculations of acoustic radiation force (ARF) arising from an imposed standing ultrasound field. First, an acoustic solid interaction (ASI) approach was implemented to calculate the ARF exerted on BPs and resultant deformation induced to them. The results were then used to derive a revised expression for the ARF beyond the small particle assumption. The expression was further assessed in numerical simulations of oneand multi-directional standing acoustic waves (SAWs). Furthermore, a particle tracing scheme was used to investigate the effect of actual ARF on separation and patterning applications under experimentally-relevant conditions. The results demonstrated a significant mismatch between the actual force and previous analytical predictions especially for high frequencies of manipulation. This deviation found to be not only because of the shifted ARF values but also due to the variation in force maps in multidirectional wave propagation. Findings of this work can tackle the simulation limitations for spatiotemporal control of BPs using a high resolution acoustic actuation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Particle Separation in the Fluid Flow in a Microchannel Including Spiral and Acoustic Regions

Particulate separation has many applications in medicine, biology and industry. In this research, the separation of polystyrene particles with a diameter of 10, 20 and 30 μm in the fluid flow of a microchannel is investigated. The microchannel consists of a spiral region and a straight region under the influence of acoustic waves. In the spiral region, the particles under hydrodynamic effects u...

متن کامل

Vehicle Cabin Noise Simulation due to High-frequencies Stimulation

In this paper, the acoustic environment in a vehicle cabin under the influence of highfrequencies aerodynamic sources has been studied. Some panels on the windshield, the roof, the doors, the front pillars, and the floor of a vehicle simulated as input source of noise when the car is moving at high speed, i.e. 112 km/h. The status of vehicle cabin in each of these modes has been studied and com...

متن کامل

Investigation of acoustic properties of silica coated gold nanoparticle as contrast agent for Ultrasonography

Interoduction: Ultrasound images have often low contrast due to small differences in acoustic impedance between different tissues. Air or gas microbubbles that surrounded by membrane are most of the contrast agents in ultrasound imaging. Problems such as instability in sound pressure and inability in penetrating from the blood vessel into body tissues limited the use of microbubbles into the in...

متن کامل

A Numerical Study on the Aeroacoustic Radiation from a Finite Length Rotating Cylinder

Rotating cylinders have wide applications in different areas, especially the aerodynamic area. However, the acoustic behaviors of these components have not been widely studied. The generating noise from a spinning cylinder is mainly due to the detached vortices from the leeward of the body. In this study, the large eddy simulation technique is used to simulate the flow field over a three-dimens...

متن کامل

Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy

The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017